Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 48.690
1.
FASEB J ; 38(8): e23590, 2024 Apr 30.
Article En | MEDLINE | ID: mdl-38656553

Studies have suggested that microglial IL-6 modulates inflammatory pain; however, the exact mechanism of action remains unclear. We therefore hypothesized that PKCε and MEG2 competitively bind to STAT3 and contribute to IL-6-mediated microglial hyperalgesia during inflammatory pain. Freund's complete adjuvant (FCA) and lipopolysaccharide (LPS) were used to induce hyperalgesia model mice and microglial inflammation. Mechanical allodynia was evaluated using von Frey tests in vivo. The interaction among PKCε, MEG2, and STAT3 was determined using ELISA and immunoprecipitation assay in vitro. The PKCε, MEG2, t-STAT3, pSTAT3Tyr705, pSTAT3Ser727, IL-6, GLUT3, and TREM2 were assessed by Western blot. IL-6 promoter activity and IL-6 concentration were examined using dual luciferase assays and ELISA. Overexpression of PKCε and MEG2 promoted and attenuated inflammatory pain, accompanied by an increase and decrease in IL-6 expression, respectively. PKCε displayed a stronger binding ability to STAT3 when competing with MEG2. STAT3Ser727 phosphorylation increased STAT3 interaction with both PKCε and MEG2. Moreover, LPS increased PKCε, MEG2, pSTAT3Tyr705, pSTAT3Ser727, IL-6, and GLUT3 levels and decreased TREM2 during microglia inflammation. IL-6 promoter activity was enhanced or inhibited by PKCε or MEG2 in the presence of STAT3 and LPS stimulation, respectively. In microglia, overexpression of PKCε and/or MEG2 resulted in the elevation of tSTAT3, pSTAT3Tyr705, pSTAT3Ser727, IL-6, and TREM2, and the reduction of GLUT3. PKCε is more potent than MEG2 when competitively binding to STAT3, displaying dual modulatory effects of IL-6 production, thus regulating the GLUT3 and TREM2 in microglia during inflammatory pain sensation.


Hyperalgesia , Inflammation , Interleukin-6 , Microglia , Protein Kinase C-epsilon , STAT3 Transcription Factor , Animals , STAT3 Transcription Factor/metabolism , Microglia/metabolism , Protein Kinase C-epsilon/metabolism , Protein Kinase C-epsilon/genetics , Mice , Interleukin-6/metabolism , Interleukin-6/genetics , Inflammation/metabolism , Hyperalgesia/metabolism , Male , Membrane Glycoproteins/metabolism , Membrane Glycoproteins/genetics , Mice, Inbred C57BL , Receptors, Immunologic/metabolism , Receptors, Immunologic/genetics , Lipopolysaccharides/toxicity , Lipopolysaccharides/pharmacology , Protein Binding , Phosphorylation , Pain/metabolism , Freund's Adjuvant
2.
Proc Natl Acad Sci U S A ; 121(15): e2400675121, 2024 Apr 09.
Article En | MEDLINE | ID: mdl-38564634

Atherosclerosis is fueled by a failure to resolve lipid-driven inflammation within the vasculature that drives plaque formation. Therapeutic approaches to reverse atherosclerotic inflammation are needed to address the rising global burden of cardiovascular disease (CVD). Recently, metabolites have gained attention for their immunomodulatory properties, including itaconate, which is generated from the tricarboxylic acid-intermediate cis-aconitate by the enzyme Immune Responsive Gene 1 (IRG1/ACOD1). Here, we tested the therapeutic potential of the IRG1-itaconate axis for human atherosclerosis. Using single-cell RNA sequencing (scRNA-seq), we found that IRG1 is up-regulated in human coronary atherosclerotic lesions compared to patient-matched healthy vasculature, and in mouse models of atherosclerosis, where it is primarily expressed by plaque monocytes, macrophages, and neutrophils. Global or hematopoietic Irg1-deficiency in mice increases atherosclerosis burden, plaque macrophage and lipid content, and expression of the proatherosclerotic cytokine interleukin (IL)-1ß. Mechanistically, absence of Irg1 increased macrophage lipid accumulation, and accelerated inflammation via increased neutrophil extracellular trap (NET) formation and NET-priming of the NLRP3-inflammasome in macrophages, resulting in increased IL-1ß release. Conversely, supplementation of the Irg1-itaconate axis using 4-octyl itaconate (4-OI) beneficially remodeled advanced plaques and reduced lesional IL-1ß levels in mice. To investigate the effects of 4-OI in humans, we leveraged an ex vivo systems-immunology approach for CVD drug discovery. Using CyTOF and scRNA-seq of peripheral blood mononuclear cells treated with plasma from CVD patients, we showed that 4-OI attenuates proinflammatory phospho-signaling and mediates anti-inflammatory rewiring of macrophage populations. Our data highlight the relevance of pursuing IRG1-itaconate axis supplementation as a therapeutic approach for atherosclerosis in humans.


Atherosclerosis , Plaque, Atherosclerotic , Animals , Humans , Mice , Atherosclerosis/drug therapy , Atherosclerosis/genetics , Cholesterol , Inflammation/metabolism , Leukocytes, Mononuclear/metabolism , Lipids , Plaque, Atherosclerotic/drug therapy , Succinates/metabolism
3.
Cell ; 187(8): 2010-2028.e30, 2024 Apr 11.
Article En | MEDLINE | ID: mdl-38569542

Gut inflammation involves contributions from immune and non-immune cells, whose interactions are shaped by the spatial organization of the healthy gut and its remodeling during inflammation. The crosstalk between fibroblasts and immune cells is an important axis in this process, but our understanding has been challenged by incomplete cell-type definition and biogeography. To address this challenge, we used multiplexed error-robust fluorescence in situ hybridization (MERFISH) to profile the expression of 940 genes in 1.35 million cells imaged across the onset and recovery from a mouse colitis model. We identified diverse cell populations, charted their spatial organization, and revealed their polarization or recruitment in inflammation. We found a staged progression of inflammation-associated tissue neighborhoods defined, in part, by multiple inflammation-associated fibroblasts, with unique expression profiles, spatial localization, cell-cell interactions, and healthy fibroblast origins. Similar signatures in ulcerative colitis suggest conserved human processes. Broadly, we provide a framework for understanding inflammation-induced remodeling in the gut and other tissues.


Colitis, Ulcerative , Colitis , Animals , Humans , Mice , Colitis/metabolism , Colitis/pathology , Colitis, Ulcerative/metabolism , Colitis, Ulcerative/pathology , Fibroblasts/metabolism , Fibroblasts/pathology , In Situ Hybridization, Fluorescence/methods , Inflammation/metabolism , Inflammation/pathology , Cell Communication , Gastrointestinal Tract/metabolism , Gastrointestinal Tract/pathology
4.
J Cell Mol Med ; 28(8): e18322, 2024 Apr.
Article En | MEDLINE | ID: mdl-38661452

In previous studies, CST has been identified as having an immunostimulatory effect on Caenorhabditis elegans and macrophage of rats. Here, we further investigated its immunomodulatory effects on human peripheral blood mononuclear cells (PBMCs). LPS-stimulated PBMCs inflammatory model was established. Flow cytometry was applied to measure phagocytosis of PBMCs. Cytokine mRNA and protein expression levels of LPS-stimulated PBMCs with or without CST were measured by qRT-PCR and ELISA. The transcriptomic profile of CST-treated PBMCs was investigated by RNA-sequencing. Gene Ontology (GO) and Kyoto Encylopedia of Genes and Genomes (KEGG) were applied to find potential signalling pathways. PBMCs showed a significant increase in phagocytic activity at 6 h after being incubated with CST at the concentration of 10 µg/mL. In the presence of LPS, CST maintained and promoted the expression of TNF-α and chemokine CCL24. The content of pro-inflammatory cytokines, such as IL-1ß, IL-6 and IFN-γ, which were released from LPS-stimulated PBMCs, was reduced by CST at 6 h. Anti-inflammatory cytokines, such as IL-4, IL-13 and TGF-ß1, were significantly increased by CST at 24 h. A total of 277 differentially expressed immune-related genes (DEIRGs) were detected and cytokine-cytokine receptor interaction was highly enriched. CST presented obvious anti-inflammatory and immunoregulatory effects in LPS-induced PBMCs inflammatory model not only by improving the ability of PBMCs to clear pathogens but also by decreasing pro-inflammatory cytokines and increasing anti-inflammatory cytokines. And the mechanism may be related to cytokine-cytokine receptor interaction.


Anti-Inflammatory Agents , Cytokines , Leukocytes, Mononuclear , Lipopolysaccharides , Humans , Leukocytes, Mononuclear/drug effects , Leukocytes, Mononuclear/metabolism , Cytokines/metabolism , Anti-Inflammatory Agents/pharmacology , Lipopolysaccharides/pharmacology , Phagocytosis/drug effects , Gene Expression Regulation/drug effects , Transcriptome , Signal Transduction/drug effects , Gene Expression Profiling , Inflammation/metabolism
5.
Biol Sex Differ ; 15(1): 38, 2024 Apr 25.
Article En | MEDLINE | ID: mdl-38664845

BACKGROUND: Obstructive sleep apnea (OSA) affects 10-26% of adults in the United States with known sex differences in prevalence and severity. OSA is characterized by elevated inflammation, oxidative stress (OS), and cognitive dysfunction. However, there is a paucity of data regarding the role of sex in the OSA phenotype. Prior findings suggest women exhibit different OSA phenotypes than men, which could result in under-reported OSA prevalence in women. To examine the relationship between OSA and sex, we used chronic intermittent hypoxia (CIH) to model OSA in rats. We hypothesized that CIH would produce sex-dependent phenotypes of inflammation, OS, and cognitive dysfunction, and these sex differences would be dependent on mitochondrial oxidative stress (mtOS). METHODS: Adult male and female Sprague Dawley rats were exposed to CIH or normoxia for 14 days to examine the impact of sex on CIH-associated circulating inflammation (IL-1ß, IL-6, IL-10, TNF-α), circulating steroid hormones, circulating OS, and behavior (recollective and spatial memory; gross and fine motor function; anxiety-like behaviors; and compulsive behaviors). Rats were implanted with osmotic minipumps containing either a mitochondria-targeting antioxidant (MitoTEMPOL) or saline vehicle 1 week prior to CIH initiation to examine how inhibiting mtOS would affect the CIH phenotype. RESULTS: Sex-specific differences in CIH-induced inflammation, OS, motor function, and compulsive behavior were observed. In female rats, CIH increased inflammation (plasma IL-6 and IL-6/IL-10 ratio) and impaired fine motor function. Conversely, CIH elevated circulating OS and compulsivity in males. These sex-dependent effects of CIH were blocked by inhibiting mtOS. Interestingly, CIH impaired recollective memory in both sexes but these effects were not mediated by mtOS. No effects of CIH were observed on spatial memory, gross motor function, or anxiety-like behavior, regardless of sex. CONCLUSIONS: Our results indicate that the impact of CIH is dependent on sex, such as an inflammatory response and OS response in females and males, respectively, that are mediated by mtOS. Interestingly, there was no effect of sex or mtOS in CIH-induced impairment of recollective memory. These results indicate that mtOS is involved in the sex differences observed in CIH, but a different mechanism underlies CIH-induced memory impairments.


Sleep apnea is a common sleeping condition in adults with a wide range of symptoms that include inflammation, oxidative stress, memory problems, anxiety, and compulsivity. Men are diagnosed with sleep apnea more often than women. Although there is limited information on how sleep apnea affects men and women differently, previous studies suggest that women may exhibit different sleep apnea symptoms than men. To examine the impact of male and female sex on common sleep apnea symptoms, we exposed adult male and female rats to a model of sleep apnea called chronic intermittent hypoxia (CIH). We found that many effects of CIH were different in males and females. CIH females had increased inflammation and motor problems, whereas CIH males had increased oxidative stress and compulsivity. To investigate the reason for these CIH sex differences, we blocked mitochondrial oxidative stress. Blocking mitochondrial oxidative stress decreased CIH associated sex differences. However, blocking mitochondrial oxidative stress had no impact on CIH-induced memory impairment that was observed in male and female rats. Our findings support previous reports that suggest that women exhibit different sleep apnea symptoms than men. Further, we extend these findings by showing that mitochondrial oxidative stress is involved in these sex differences. Clinically, patients diagnosed with sleep apnea are typically treated with continuous positive airway pressure (CPAP) machines, which have high rates of non-compliance (15­40%). Therefore, understanding why sleep apnea is causing these symptoms will be important in developing therapeutics.


Hypoxia , Rats, Sprague-Dawley , Sex Characteristics , Sleep Apnea, Obstructive , Animals , Female , Male , Sleep Apnea, Obstructive/complications , Sleep Apnea, Obstructive/metabolism , Hypoxia/metabolism , Oxidative Stress , Mitochondria/metabolism , Rats , Inflammation/metabolism , Cytokines/metabolism , Cytokines/blood , Behavior, Animal
6.
Microbiome ; 12(1): 74, 2024 Apr 15.
Article En | MEDLINE | ID: mdl-38622632

BACKGROUND: The equine gastrointestinal (GI) microbiome has been described in the context of various diseases. The observed changes, however, have not been linked to host function and therefore it remains unclear how specific changes in the microbiome alter cellular and molecular pathways within the GI tract. Further, non-invasive techniques to examine the host gene expression profile of the GI mucosa have been described in horses but not evaluated in response to interventions. Therefore, the objectives of our study were to (1) profile gene expression and metabolomic changes in an equine model of non-steroidal anti-inflammatory drug (NSAID)-induced intestinal inflammation and (2) apply computational data integration methods to examine host-microbiota interactions. METHODS: Twenty horses were randomly assigned to 1 of 2 groups (n = 10): control (placebo paste) or NSAID (phenylbutazone 4.4 mg/kg orally once daily for 9 days). Fecal samples were collected on days 0 and 10 and analyzed with respect to microbiota (16S rDNA gene sequencing), metabolomic (untargeted metabolites), and host exfoliated cell transcriptomic (exfoliome) changes. Data were analyzed and integrated using a variety of computational techniques, and underlying regulatory mechanisms were inferred from features that were commonly identified by all computational approaches. RESULTS: Phenylbutazone induced alterations in the microbiota, metabolome, and host transcriptome. Data integration identified correlation of specific bacterial genera with expression of several genes and metabolites that were linked to oxidative stress. Concomitant microbiota and metabolite changes resulted in the initiation of endoplasmic reticulum stress and unfolded protein response within the intestinal mucosa. CONCLUSIONS: Results of integrative analysis identified an important role for oxidative stress, and subsequent cell signaling responses, in a large animal model of GI inflammation. The computational approaches for combining non-invasive platforms for unbiased assessment of host GI responses (e.g., exfoliomics) with metabolomic and microbiota changes have broad application for the field of gastroenterology. Video Abstract.


Microbiota , Animals , Horses/genetics , Intestinal Mucosa/metabolism , Metabolome , Feces/microbiology , Anti-Inflammatory Agents, Non-Steroidal/metabolism , Inflammation/metabolism , Phenylbutazone/metabolism , RNA, Ribosomal, 16S/genetics , RNA, Ribosomal, 16S/metabolism
7.
J Orthop Surg Res ; 19(1): 243, 2024 Apr 16.
Article En | MEDLINE | ID: mdl-38622659

Inflammatory reactions are involved in the development of steroid-induced osteonecrosis of the femoral head(ONFH). Studies have explored the therapeutic efficacy of inhibiting inflammatory reactions in steroid-induced ONFH and revealed that inhibiting inflammation may be a new strategy for preventing the development of steroid-induced ONFH. Exosomes derived from M2 macrophages(M2-Exos) display anti-inflammatory properties. This study aimed to examine the preventive effect of M2-Exos on early-stage steroid-induced ONFH and explore the underlying mechanisms involved. In vitro, we explored the effect of M2-Exos on the proliferation and osteogenic differentiation of bone marrow-derived mesenchymal stem cells(BMMSCs). In vivo, we investigated the role of M2-Exos on inflammation, osteoclastogenesis, osteogenesis and angiogenesis in an early-stage rat model of steroid-induced ONFH. We found that M2-Exos promoted the proliferation and osteogenic differentiation of BMMSCs. Additionally, M2-Exos effectively attenuated the osteonecrotic changes, inhibited the expression of proinflammatory mediators, promoted osteogenesis and angiogenesis, reduced osteoclastogenesis, and regulated the polarization of M1/M2 macrophages in steroid-induced ONFH. Taken together, our data suggest that M2-Exos are effective at preventing steroid-induced ONFH. These findings may be helpful for providing a potential strategy to prevent the development of steroid-induced ONFH.


Bone Resorption , Exosomes , Femur Head Necrosis , Osteonecrosis , Rats , Animals , Osteogenesis , Exosomes/metabolism , Femur Head/metabolism , Osteonecrosis/prevention & control , Inflammation/metabolism , Macrophages/metabolism , Steroids/adverse effects , Femur Head Necrosis/chemically induced , Femur Head Necrosis/prevention & control , Femur Head Necrosis/metabolism
8.
Eur J Med Res ; 29(1): 233, 2024 Apr 15.
Article En | MEDLINE | ID: mdl-38622672

BACKGROUND: Atrial fibrillation (AF) is associated with circulating inflammation. Short-chain fatty acids (SCFAs) derived from gut microbiota (GM) regulate leukocyte function and inhibit the release of inflammatory cytokines, which are partly mediated by the G-protein-coupled receptor 43 (GPR43) signaling. This study aimed to investigate the expression of GPR43/NOD-like receptors family pyrin domain containing 3 (NLRP3) in leukocytes and the interaction with intestinal SCFAs levels in AF patients. METHODS: Expressions of GPR43 and NLRP3 mRNA in peripheral blood leukocytes from 23 AF patients and 25 non-AF controls were detected by quantitative reverse transcription-polymerase chain reaction (qRT-PCR). Expressions of leukocyte GPR43 and NLRP3 protein were evaluated by western blot analysis. The levels of plasma IL-1ß were measured by enzyme-linked immunosorbent assay (ELISA). The fecal SCFAs levels based on GC/MS metabolome of corresponding 21 controls and 14 AF patients were acquired from our published dataset. To evaluate the expression of NLRP3 and GPR43 and the release of IL-1ß, human THP-1 cells were stimulated with or without SCFAs (acetate, propionate, and butyrate), lipopolysaccharide (LPS), and nigericin in vitro, respectively. RESULTS: Compared to the controls, the mRNA expression in peripheral leukocytes was significantly reduced in AF patients (P = 0.011) coupled with the increase in downstream leukocyte NLRP3 mRNA expression (P = 0.007) and plasma IL-1ß levels (P < 0.001), consistent with changes in GPR43 and NLRP3 protein expression. Furthermore, leukocyte GPR43 mRNA levels were positively correlated with fecal GM-derived acetic acid (P = 0.046) and negatively correlated with NLRP3 mRNA expression (P = 0.024). In contrast to the negative correlation between left atrial diameter (LAD) and GPR43 (P = 0.008), LAD was positively correlated with the leukocyte NLRP3 mRNA levels (P = 0.024). Subsequent mediation analysis showed that 68.88% of the total effect of intestinal acetic acid on AF might be mediated by leukocyte GPR43/NLRP3. The constructed GPR43-NLRP3 score might have a predictive potential for AF detection (AUC = 0.81, P < 0.001). Moreover, SCFAs treatment increased GPR43 expression and remarkably reduced LPS/nigericin-induced NLRP3 expression and IL-1ß release in human THP-1 cells in vitro. CONCLUSIONS: Disrupted interactions between GPR43 and NLRP3 expression in peripheral blood leukocytes, associated with reduced intestinal GM-derived SCFAs, especially acetic acid, may be involved in AF development and left atrial enlargement by enhancing circulating inflammation.


Atrial Fibrillation , NLR Family, Pyrin Domain-Containing 3 Protein , Humans , Acetates/metabolism , Fatty Acids, Volatile/metabolism , Inflammation/metabolism , Leukocytes/metabolism , Lipopolysaccharides/pharmacology , Nigericin/metabolism , NLR Family, Pyrin Domain-Containing 3 Protein/genetics , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , RNA, Messenger/genetics , RNA, Messenger/metabolism
9.
Lipids Health Dis ; 23(1): 112, 2024 Apr 19.
Article En | MEDLINE | ID: mdl-38641607

It is hypothesized that COVID-19, post-COVID and post-mRNA COVID-19 (and other related) vaccine manifestations including "long haul syndrome" are due to deficiency of essential fatty acids (EFAs) and dysregulation of their metabolism. This proposal is based on the observation that EFAs and their metabolites can modulate the swift immunostimulatory response of SARS-CoV-2 and similar enveloped viruses, suppress inappropriate cytokine release, possess cytoprotective action, modulate serotonin and bradykinin production and other neurotransmitters, inhibit NF-kB activation, regulate cGAS-STING pathway, modulate gut microbiota, inhibit platelet activation, regulate macrophage and leukocyte function, enhance wound healing and facilitate tissue regeneration and restore homeostasis. This implies that administration of EFAs could be of benefit in the prevention and management of COVID-19 and its associated complications.


COVID-19 , Humans , SARS-CoV-2/metabolism , Fatty Acids, Essential/metabolism , Syndrome , Inflammation/metabolism
10.
Cell Mol Biol Lett ; 29(1): 55, 2024 Apr 20.
Article En | MEDLINE | ID: mdl-38643118

BACKGROUND: Viral myocarditis (VMC) is a disease resulting from viral infection, which manifests as inflammation of myocardial cells. Until now, the treatment of VMC is still a great challenge for clinicians. Increasing studies indicate the participation of miR-29b-3p in various diseases. According to the transcriptome sequencing analysis, miR-29b-3p was markedly upregulated in the viral myocarditis model. The purpose of this study was to investigate the role of miR-29b-3p in the progression of VMC. METHODS: We used CVB3 to induce primary cardiomyocytes and mice to establish a model of viral myocarditis. The purity of primary cardiomyocytes was identified by immunofluorescence. The cardiac function of mice was detected by Vevo770 imaging system. The area of inflammatory infiltration in heart tissue was shown by hematoxylin and eosin (H&E) staining. The expression of miR-29b-3p and DNMT3A was detected by quantitative real time polymerase chain reaction (qRT-PCR). The expression of a series of pyroptosis-related proteins was detected by western blot. The role of miR-29b-3p/DNMT3A in CVB3-induced pyroptosis of cardiomyocytes was studied in this research. RESULTS: Our data showed that the expression of miR-29b-3p was upregulated in CVB3-induced cardiomyocytes and heart tissues in mice. To explore the function of miR-29b-3p in CVB3-induced VMC, we conducted in vivo experiments by knocking down the expression of miR-29b-3p using antagomir. We then assessed the effects on mice body weight, histopathology changes, myocardial function, and cell pyroptosis in heart tissues. Additionally, we performed gain/loss-of-function experiments in vitro to measure the levels of pyroptosis in primary cardiomyocytes. Through bioinformatic analysis, we identified DNA methyltransferases 3A (DNMT3A) as a potential target gene of miR-29b-3p. Furthermore, we found that the expression of DNMT3A can be modulated by miR-29b-3p during CVB3 infection. CONCLUSIONS: Our results demonstrate a correlation between the expression of DNMT3A and CVB3-induced pyroptosis in cardiomyocytes. These findings unveil a previously unidentified mechanism by which CVB3 induces cardiac injury through the regulation of miR-29b-3p/DNMT3A-mediated pyroptosis.


MicroRNAs , Myocarditis , Mice , Animals , Myocarditis/genetics , Myocarditis/metabolism , Myocytes, Cardiac/metabolism , Pyroptosis , MicroRNAs/genetics , MicroRNAs/metabolism , Inflammation/metabolism , Antagomirs/metabolism
11.
Aging (Albany NY) ; 16(7): 6478-6487, 2024 Apr 04.
Article En | MEDLINE | ID: mdl-38579176

Stigmasterol is a common dietary phytosterol with high nutritional value and physiological activity. In this study, we evaluated the effects of stigmasterol on inflammatory cytokines and the TGF-ß1/Smad2 and IL-17A signaling pathway in an ovalbumin (OVA)-induced asthma mouse model. Stigmasterol treatment improved airway remodeling. In addition, it significantly attenuated the symptoms of asthma attacks, reduced the number of macrophages, lymphocytes, neutrophils, and eosinophils in BALF and inflammatory cytokines, including IL-1ß, IL-5, IL-6, and IL-13. It further decreased the level of IL-17A in BALF, serum and spleen. Spleen single-cell suspension analysis via flow cytometry showed that IL-17A level was consistent with the results obtained in BALF, serum and spleen. Stigmasterol decreased the protein expression levels of TGF-ß, p-Smad2 and IL-17A in the spleen, by increasing the protein expression level of IL-10. After 24 h of co-culture of TGF-ß, IL-6 and stigmasterol, the level of IL-17 in CD4+ T cell supernatant was lower relative to levels in the group without stigmasterol. Meanwhile, stigmasterol treatment attenuated the expression level of TGF- ß, p-Smad2 and IL-17A proteins in CD4+ T cells and enhanced the expression levels of IL-10 protein. These data suggested that stigmasterol inhibited the TGF-ß1/Smad2 and IL-17A signaling pathway to achieve anti-asthmatic effects in the OVA-induced asthma mouse model. Collectively, the results of this study are that stigmasterol has achieved preliminary efficacy in the non-clinical laboratory, further studies are needed to consider the clinical application of stigmasterol.


Asthma , Interleukin-17 , Ovalbumin , Signal Transduction , Smad2 Protein , Stigmasterol , Transforming Growth Factor beta1 , Animals , Asthma/drug therapy , Asthma/metabolism , Asthma/chemically induced , Asthma/immunology , Smad2 Protein/metabolism , Mice , Transforming Growth Factor beta1/metabolism , Signal Transduction/drug effects , Interleukin-17/metabolism , Stigmasterol/pharmacology , Disease Models, Animal , Mice, Inbred BALB C , Female , Airway Remodeling/drug effects , Inflammation/metabolism , Inflammation/drug therapy
12.
Mol Nutr Food Res ; 68(8): e2300720, 2024 Apr.
Article En | MEDLINE | ID: mdl-38581348

SCOPE: The global prevalence of obesity has significantly increased, presenting a major health challenge. High-fat diet (HFD)-induced obesity is closely related to the disease severity of psoriasis, but the mechanism is not fully understood. METHODS AND RESULTS: The study utilizes the HFD-induced obesity model along with an imiquimod (IMQ)-induced psoriasis-like mouse model (HFD-IMQ) to conduct transcriptomics and metabolomic analyses. HFD-induced obese mice exhibits more severe psoriasis-like lesions compared to normal diet (ND)-IMQ mice. The expression of genes of the IL-17 signaling pathway (IL-17A, IL-17F, S100A9, CCL20, CXCL1) is significantly upregulated, leading to an accumulation of T cells and neutrophils in the skin. Moreover, the study finds that there is an inhibition of the branched-chain amino acids (BCAAs) catabolism pathway, and the key gene branched-chain amino transferase 2 (Bcat2) is significantly downregulated, and the levels of leucine, isoleucine, and valine are elevated in the HFD-IMQ mice. Furthermore, the study finds that the peroxisome proliferator-activated receptor gamma (PPAR γ) is inhibited, while STAT3 activity is promoted in HFD-IMQ mice. CONCLUSION: HFD-induced obesity significantly amplifies IL-17 signaling and exacerbates psoriasis, with a potential role played by Bcat2-mediated BCAAs metabolism. The study suggests that BCAA catabolism and PPAR γ-STAT3 exacerbate inflammation in psoriasis with obesity.


Amino Acids, Branched-Chain , Diet, High-Fat , Imiquimod , Inflammation , Mice, Inbred C57BL , Obesity , Psoriasis , Animals , Psoriasis/metabolism , Amino Acids, Branched-Chain/metabolism , Obesity/metabolism , Obesity/complications , Diet, High-Fat/adverse effects , Male , Inflammation/metabolism , STAT3 Transcription Factor/metabolism , STAT3 Transcription Factor/genetics , Interleukin-17/metabolism , Interleukin-17/genetics , Mice , PPAR gamma/metabolism , PPAR gamma/genetics , Disease Models, Animal , Mice, Obese , Signal Transduction , Transaminases/metabolism , Skin/metabolism
13.
Proc Natl Acad Sci U S A ; 121(16): e2304704121, 2024 Apr 16.
Article En | MEDLINE | ID: mdl-38593073

Childhood maltreatment (CM) leads to a lifelong susceptibility to mental ill-health which might be reflected by its effects on adult brain structure, perhaps indirectly mediated by its effects on adult metabolic, immune, and psychosocial systems. Indexing these systemic factors via body mass index (BMI), C-reactive protein (CRP), and rates of adult trauma (AT), respectively, we tested three hypotheses: (H1) CM has direct or indirect effects on adult trauma, BMI, and CRP; (H2) adult trauma, BMI, and CRP are all independently related to adult brain structure; and (H3) childhood maltreatment has indirect effects on adult brain structure mediated in parallel by BMI, CRP, and AT. Using path analysis and data from N = 116,887 participants in UK Biobank, we find that CM is related to greater BMI and AT levels, and that these two variables mediate CM's effects on CRP [H1]. Regression analyses on the UKB MRI subsample (N = 21,738) revealed that greater CRP and BMI were both independently related to a spatially convergent pattern of cortical effects (Spearman's ρ = 0.87) characterized by fronto-occipital increases and temporo-parietal reductions in thickness. Subcortically, BMI was associated with greater volume, AT with lower volume and CPR with effects in both directions [H2]. Finally, path models indicated that CM has indirect effects in a subset of brain regions mediated through its direct effects on BMI and AT and indirect effects on CRP [H3]. Results provide evidence that childhood maltreatment can influence brain structure decades after exposure by increasing individual risk toward adult trauma, obesity, and inflammation.


Brain , Child Abuse , Adult , Humans , Child , Brain/diagnostic imaging , Brain/metabolism , C-Reactive Protein/metabolism , Inflammation/metabolism , Obesity/complications , Child Abuse/psychology
14.
Cell Rep Med ; 5(4): 101503, 2024 Apr 16.
Article En | MEDLINE | ID: mdl-38593810

In monogenic autoinflammatory diseases, mutations in genes regulating innate immune responses often lead to uncontrolled activation of inflammasome pathways or the type I interferon (IFN-I) response. We describe a mechanism of autoinflammation potentially predisposing patients to life-threatening necrotizing soft tissue inflammation. Six unrelated families are identified in which affected members present with necrotizing fasciitis or severe soft tissue inflammations. Exome sequencing reveals truncating monoallelic loss-of-function variants of nuclear factor κ light-chain enhancer of activated B cells (NFKB1) in affected patients. In patients' macrophages and in NFKB1-variant-bearing THP-1 cells, activation increases both interleukin (IL)-1ß secretion and IFN-I signaling. Truncation of NF-κB1 impairs autophagy, accompanied by the accumulation of reactive oxygen species and reduced degradation of inflammasome receptor nucleotide-binding oligomerization domain, leucine-rich repeat-containing protein 3 (NLRP3), and Toll/IL-1 receptor domain-containing adaptor protein inducing IFN-ß (TRIF), thus leading to combined excessive inflammasome and IFN-I activity. Many of the patients respond to anti-inflammatory treatment, and targeting IL-1ß and/or IFN-I signaling could represent a therapeutic approach for these patients.


Fasciitis, Necrotizing , Interferon Type I , Humans , Inflammasomes/metabolism , NLR Family, Pyrin Domain-Containing 3 Protein/genetics , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Immunity, Innate , Inflammation/metabolism , NF-kappa B p50 Subunit
15.
Cell Death Dis ; 15(4): 278, 2024 Apr 18.
Article En | MEDLINE | ID: mdl-38637559

Myelodysplastic syndromes (MDS) are a heterogeneous group of pre-leukemic hematopoietic disorders characterized by cytopenia in peripheral blood due to ineffective hematopoiesis and normo- or hypercellularity and morphologic dysplasia in bone marrow (BM). An inflammatory BM microenvironment and programmed cell death of hematopoietic stem/progenitor cells (HSPCs) are thought to be the major causes of ineffective hematopoiesis in MDS. Pyroptosis, apoptosis and necroptosis (collectively, PANoptosis) are observed in BM tissues of MDS patients, suggesting an important role of PANoptosis in MDS pathogenesis. Caspase 8 (Casp8) is a master regulator of PANoptosis, which is downregulated in HSPCs from most MDS patients and abnormally spliced in HSPCs from MDS patients with SRSF2 mutation. To study the role of PANoptosis in hematopoiesis, we generated inducible Casp8 knockout mice (Casp8-/-). Mx1-Cre-Casp8-/- mice died of BM failure within 10 days of polyI:C injections due to depletion of HSPCs. Rosa-ERT2Cre-Casp8-/- mice are healthy without significant changes in BM hematopoiesis within the first 1.5 months after Casp8 deletion. Such mice developed BM failure upon infection or low dose polyI:C/LPS injections due to the hypersensitivity of Casp8-/- HSPCs to infection or inflammation-induced necroptosis which can be prevented by Ripk3 deletion. However, impaired self-renewal capacity of Casp8-/- HSPCs cannot be rescued by Ripk3 deletion due to activation of Ripk1-Tbk1 signaling. Most importantly, mice transplanted with Casp8-/- BM cells developed MDS-like disease within 4 months of transplantation as demonstrated by anemia, thrombocytopenia and myelodysplasia. Our study suggests an essential role for a balance in Casp8, Ripk3-Mlkl and Ripk1-Tbk1 activities in the regulation of survival and self-renewal of HSPCs, the disruption of which induces inflammation and BM failure, resulting in MDS-like disease.


Myelodysplastic Syndromes , Animals , Humans , Mice , Bone Marrow Failure Disorders/complications , Caspase 8/genetics , Caspase 8/metabolism , Inflammation/metabolism , Mice, Knockout , Myelodysplastic Syndromes/genetics , Myelodysplastic Syndromes/metabolism
16.
Front Immunol ; 15: 1327416, 2024.
Article En | MEDLINE | ID: mdl-38638441

In previous studies, we showed that fibroblast growth factor receptors (FGFRs) contribute to inflammatory mediator output from primary rhesus microglia in response to live Borrelia burgdorferi. We also demonstrated that non-viable B. burgdorferi can be as pathogenic as live bacteria, if not more so, in both CNS and PNS tissues. In this study we assessed the effect of live and non-viable B. burgdorferi in inducing FGFR expression from rhesus frontal cortex (FC) and dorsal root ganglion (DRG) tissue explants as well as their neuronal/astrocyte localization. Specific FGFR inhibitors were also tested for their ability to attenuate inflammatory output and apoptosis in response to either live or non-viable organisms. Results show that in the FC, FGFR2 was the most abundantly expressed receptor followed by FGFR3 and FGFR1. Non-viable B. burgdorferi significantly upregulated FGFR3 more often than live bacteria, while the latter had a similar effect on FGFR1, although both treatments did affect the expressions of both receptors. FGFR2 was the least modulated in the FC tissues by the two treatments. FGFR1 expression was more prevalent in astrocytes while FGFR2 and FGFR3 showed higher expression in neurons. In the DRG, all three receptor expressions were also seen, but could not be distinguished from medium controls by immunofluorescence. Inhibition of FGFR1 by PD166866 downregulated both inflammation and apoptosis in both FC and DRG in response to either treatment in all the tissues tested. Inhibition of FGFR1-3 by AZD4547 similarly downregulated both inflammation and apoptosis in both FC and DRG in response to live bacteria, while with sonicated remnants, this effect was seen in one of the two FC tissues and 2 of 3 DRG tissues tested. CCL2 and IL-6 were the most downregulated mediators in the FC, while in the DRG it was CXCL8 and IL-6 in response to FGFR inhibition. Downregulation of at least two of these three mediators was observed to downregulate apoptosis levels in general. We show here that FGFR inhibition can be an effective anti-inflammatory treatment in antibiotic refractive neurological Lyme. Alternatively, two biologics may be needed to effectively curb neuroinflammation and pathology in the CNS and PNS.


Borrelia burgdorferi , Humans , Interleukin-6/metabolism , Inflammation/metabolism , Neurons/metabolism , Receptors, Fibroblast Growth Factor/metabolism
17.
Clinics (Sao Paulo) ; 79: 100354, 2024.
Article En | MEDLINE | ID: mdl-38640751

AIM: The study was to clarify the mechanism of miR-1258 targeting Prep1 (pKnox1) to control Transforming Growth Factor ß1 (TGF-ß1)/SMAD3 pathway in septic Acute Lung Injury (ALI)-induced oxidative stress and inflammation. METHODS: BEAS-2B cells and C57BL/6 mice were used to make in vitro and in vivo septic ALI models, respectively. miR-1258 expression was checked by RT-qPCR. After transfection in the in vitro experimental model, inflammation, oxidative stress, viability, and apoptosis were observed through ELISA, MTT, and flow cytometry. RESULTS: In the in vivo model after miR-1258 overexpression treatment, inflammation, oxidative stress, and lung injury were further investigated. The targeting relationship between miR-1258 and Pknox1 was tested. Low miR-1258 was expressed in septic ALI patients, LPS-treated BEAS-2B cells, and mice. Upregulated miR-1258 prevented inflammation, oxidative stress, and apoptosis but enhanced the viability of LPS-treated BEAS-2B cells. The impact of upregulated miR-1258 on LPS-treated BEAS-2B cells was mitigated by inhibiting Pknox1 expression. MiR-1258 overexpression had the alleviating effects on inflammation, oxidative stress, and lung injury of LPS-injured mice through suppressing Pknox1 expression and TGF-ß1/SMAD3 cascade activation. CONCLUSIONS: The study concludes that miR-1258 suppresses oxidative stress and inflammation in septic ALI through the Pknox1-regulated TGF-ß1/SMAD3 cascade.


Acute Lung Injury , Apoptosis , Mice, Inbred C57BL , MicroRNAs , Oxidative Stress , Sepsis , Smad3 Protein , Transforming Growth Factor beta1 , Acute Lung Injury/genetics , Acute Lung Injury/metabolism , Animals , Transforming Growth Factor beta1/metabolism , Smad3 Protein/metabolism , MicroRNAs/metabolism , MicroRNAs/genetics , Humans , Sepsis/complications , Sepsis/metabolism , Sepsis/genetics , Male , Inflammation/metabolism , Disease Models, Animal , Mice , Up-Regulation , Signal Transduction
19.
Physiol Rep ; 12(8): e16020, 2024 Apr.
Article En | MEDLINE | ID: mdl-38658362

Desminopathy R350P is a human myopathy that is characterized by the progressive loss of muscle fiber organization. This results in the loss of muscle size, mobility, and strength. In desminopathy, inflammation affects muscle homeostasis and repair, and contributes to progressive muscle deterioration. Mitochondria morphology was also suggested to affect desminopathy progression. Epicatechin (Epi)-a natural compound found in cacao-has been proposed to regulate inflammatory signaling and mitochondria morphology in human and animal models. Hence, we hypothesize chronic Epi consumption to improve inflammatory pathway and mitochondria morphology in the peripheral blood mononuclear cells (PBMCs) of a desminopathy R350P patient. We found that 12 weeks of Epi consumption partially restored TRL4 signaling, indicative of inflammatory signaling and mitochondria morphology in the desminopathy patient. Moreover, Epi consumption improved blood health parameters, including reduced HOMA-IR and IL-6 levels in the desminopathy patient. This indicates that Epi consumption could be a useful tool to slow disease progression in desminopathy patients.


Catechin , Leukocytes, Mononuclear , Mitochondria , Humans , Catechin/pharmacology , Catechin/administration & dosage , Leukocytes, Mononuclear/metabolism , Leukocytes, Mononuclear/drug effects , Mitochondria/metabolism , Mitochondria/drug effects , Mitochondria/pathology , Male , Muscular Dystrophies/metabolism , Muscular Dystrophies/pathology , Muscular Dystrophies/drug therapy , Muscular Dystrophies/genetics , Adult , Female , Inflammation/metabolism , Inflammation/pathology , Cardiomyopathies/metabolism , Cardiomyopathies/pathology , Cardiomyopathies/drug therapy , Desmin/metabolism , Desmin/genetics
20.
Commun Biol ; 7(1): 494, 2024 Apr 24.
Article En | MEDLINE | ID: mdl-38658802

Inflammatory monocytes (iMO) are recruited from the bone marrow to the brain during viral encephalitis. C-C motif chemokine receptor (CCR) 2 deficiency substantially reduces iMO recruitment for most, but not all encephalitic viruses. Here we show CCR7 acts synergistically with CCR2 to control this process. Following Herpes simplex virus type-1 (HSV-1), or La Crosse virus (LACV) infection, we find iMO proportions are reduced by approximately half in either Ccr2 or Ccr7 knockout mice compared to control mice. However, Ccr2/Ccr7 double knockouts eliminate iMO recruitment following infection with either virus, indicating these receptors together control iMO recruitment. We also find that LACV induces a more robust iMO recruitment than HSV-1. However, unlike iMOs in HSV-1 infection, LACV-recruited iMOs do not influence neurological disease development. LACV-induced iMOs have higher expression of proinflammatory and proapoptotic but reduced mitotic, phagocytic and phagolysosomal transcripts compared to HSV-1-induced iMOs. Thus, virus-specific activation of iMOs affects their recruitment, activation, and function.


Brain , Herpesvirus 1, Human , La Crosse virus , Mice, Knockout , Monocytes , Receptors, CCR2 , Receptors, CCR7 , Animals , Receptors, CCR2/metabolism , Receptors, CCR2/genetics , Mice , Monocytes/immunology , Monocytes/metabolism , Monocytes/virology , Brain/virology , Brain/metabolism , Brain/immunology , Herpesvirus 1, Human/physiology , La Crosse virus/genetics , La Crosse virus/physiology , Receptors, CCR7/metabolism , Receptors, CCR7/genetics , Encephalitis, California/virology , Encephalitis, California/genetics , Encephalitis, California/metabolism , Encephalitis, California/immunology , Mice, Inbred C57BL , Inflammation/metabolism , Inflammation/virology , Female , Male
...